
Python Programming

Jean-Pierre Messager (jp@xiasma.fr)

27 of September, 2020 – version 1.0b

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 1 / 112

No commercial use without authorization

LICENSE
Creative Commons Licence Attribution-NonCommercial-NoDerivatives 4.0

International (CC BY-NC-ND 4.0)
This is a human-readable summary of (and not a substitute for) the license :
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
You are free to:
Share — copy and redistribute the material in any medium or format.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You
may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from
doing anything the license permits.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 2 / 112

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Download this course and exercises

This course is published on a git repository
Sign in on https://framagit.org/
Send me your id
I may promote you as a reporter on this project

Read access to material and exercises files
Opening tickets

There: https://framagit.org/jpython/python-course
Others projects : https://framagit.org/jpython/meta
You can access to updates and new versions
For every major revision a new tag is created

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 3 / 112

https://framagit.org/
https://framagit.org/jpython/python-course
https://framagit.org/jpython/meta

Python Programming

Contents
What is Python ?
A first program
Storing and processing data
Collections
Loops
Functions
Debugging and test
Object Oriented Programming
Modules
A few words on Anaconda, NumPy, Pandas

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 4 / 112

Storing and processing data
Names and references
Data types
Operators, functions and methods
Booleans and conditions

Collections
Data collections
Lists
Changing and extracting data
Others type of collections

Loops
Looping through lists
Looping through other collections
Comprehensions

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 5 / 112

Functions
Structuring programs
Passing arguments
Returning values
Function calls

Debugging and tests
Interpreting error messages
Debuggers
Unit tests

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 6 / 112

Object Oriented Programming
Defining new classes
Constructors
Normal and dunder methods
Overloading operators
Inheritance

Modules
Importing custom modules
Preventing code execution
Special methods and attributes

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 7 / 112

History of Python
Python 1

Created in 1989-1991 by the Dutch programmer Guido van
Rossum
Named as a tribute to the (mainly) British comedy troup
Monty Python

Python 2
Supported by the non-profit organization Python Software
Fundation, created in 2008
Is no more maintained since 1st of January 2020

Python 3
Published in 2008: should be the version you use!
Guido van Rossum stepped down as the PSF Benevolent
Dictator For Life in 2018, but is still deeply involved in the
language development

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 8 / 112

Programming languages paradigms

Several logical paradigms
Imperative programming: bunch of expressions and instructions

C, Pascal, Fortran
Functional programing: calling and returning functions

LISP, Scheme, CaML, Haskell
Object Oriented programming: data and operations are
encapsulated together

Java, C#, Smalltalk
Some languages, like Python, allow various paradigms

Constraining data manipulation
Déclarative: you have to specify all data types (integer, float,
strings, arrays, . . .)
Strongly typed: no (or almost no) implicit type conversion
Python is strongly typed but not declarative

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 9 / 112

Programming languages

Low level languages
Explicit memory allocation
Compiled to machine code, then translated to binary
Conceptually close to assembly language, but more convenient
Very high performance
Usually used to write operating systems, utilities, and system
libraries
High performance and real time computing, games
To name a few: C, C++, D, Fortran, Pascal, PL/1, Ada

Other languages implementations (compilers, interpreters) are
usually written in one of these languages.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 10 / 112

Another way to consider programming languages

High–level mathematical languages
Automatic memory allocation
Usually interpreted (running on top of a virtual machine)
Based on advanced abstract mathematical concepts
Examples : LISP, Scheme, CaML, Haskell

High–level pragmatic languages
Easier to deal with
Could lead to bad practices and unmaintable code: BASIC,
PHP, JavaScript
Or not: Ruby, Python

This course is based on Python 3.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 11 / 112

Python

Python’s history
Created in 1991 by Guido Van Rossum
Focus on readibility, rigor, ease of use and expressiveness
Fit for beginners as well as experienced programmers
Python 2 gained popularity during the 200x
Python 3 is about ten years old now
Free Software (Open Source)

Features
Object-oriented from the ground up
Multiple paradigms : imperative, functional, object oriented
Portable: UNIX, GNU/Linux, MS Windows, . . .
Very rich set of high level libraries (modules)

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 12 / 112

Instructions and expressions

Python makes a difference between expressions and instructions.

An expression compute something and has a value:
42 + 13
"Hello " + name + "!"
len(foodInfo)

Values: 55, ‘Hello John!’ (if name is ‘John’) then the length of data
structure foodInfo.

An expression can have a side effect
i.e. “doing something in addition to have a value”

print('Hello!')
The value here is None, a special value in Python aimed to
represent “nothingness”.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 13 / 112

Instructions and expressions

An instruction does something
An instruction only has a side effect it has no value!

res = res * i # assignment
if price < 42: # this line and the next one are

print("It's cheap!") # one instruction

An instruction can embbed expressions
msg = 'Hello ' + name
if price > 12 and price < 56:

print("Price ok.")
'Hello ' + name is an expression
price > 12 and price < 56 too
also print(...)

An expression cannot contain instructions.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 14 / 112

Usual errors

Triggered by the compiler
If you write an instruction in a place where an expression is awaited,
an Exception is raised at compilation time:

if i = 1:
...
SyntaxError: invalid syntax

Untriggered by the compiler (at best you’ll get a warning)
Writing down an expression instead of an instruction : what you
asked for is computed but has no practical effect : it is a BUG!

31 + 11
if price == 42:

print('Good price!')
What was intended:

price = 31 + 11

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 15 / 112

Compiled languages

Compiler generate assembly code, then translate to binary
$ gcc -o factorial factorial.c
$ file factorial
factorielle: ELF 64-bit LSB pie executable,
x86_64, version 1 (SYSV), dynamically linked,
...
$./factorial
Number: 5
120

You can have a look to intermediate assembly code
$ gcc -S factorielle.c
$ less factorielle.s

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 16 / 112

Interpreted languages

Bytecode
Most interpreted languages are compiled into a specific format:
the bytecode

It’s a binary format
Independant of any CPU architecture
Supposed to be executed by a specific software: a virtual
machine

Examples : Java, C#, Python, Perl, . . .

Some virtual machines
JVM : Java Virtual Machine (Java, Groovy, . . .)
.NET Runtime (C#, VisualBasic.NET, F#, . . .)
PVM : Python Virtual Machine
Perl 6 : Parrot, MoarVM

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 17 / 112

Compiling and executing

Both steps can be separated:
$ javac hello.java
$ ls
hello.java hello.class
$ java hello
Hello World!

. . . or taking place in one go:
$ python3 hello.py
Hello World!

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 18 / 112

Bytecode

You can disassemble a program
In Python the dis module allows you to look at bytecode:

...
>> 20 FOR_ITER 12 (to 34)

22 STORE_FAST 2 (i)

4 24 LOAD_FAST 1 (res)
26 LOAD_FAST 2 (i)
28 BINARY_MULTIPLY
30 STORE_FAST 1 (res)
32 JUMP_ABSOLUTE 20

>> 34 POP_BLOCK
....

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 19 / 112

Libraries

Libraries extend the language
Solve a specif problems or help you to solve it
A library extends language features:

Mathematics
Text processing
Graphical User Interfaces, Web programming
Databases access
etc.

Operating systems provides several binary libraries (.dll for
MS Windows, .so for UNIX and GNU/Linux)
You can then install more of them

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 20 / 112

Python libraries

Python Modules
Python is “batteries included”: a rich standard library

Mathematics, text processing, networking, system, . . .
A whole part of the official documentation presents them

Third party modules are available http://pypi.org
And can be installed very easily by the tool pip

The math module
$ python3
>>> factorial(5)
...
NameError: name 'factorial' is not defined
>>> from math import factorial
>>> factorial(5)
120

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 21 / 112

http://pypi.org

Programming in Python

Interactive mode
Just install Python 3 and you’re done!

On MS Windows do not forgot to ask for PATH variable update
Open a terminal (note that in your installation Python 3
command may be either python3 or python)
$ python3 # or python
Python 3.7.3 (default, Apr 3 2019, 05:39:12)
>>> 42 + 13
55
>>> price = 42
>>> price = price / 2
>>> price > 16 and price < 42
True
>>> print('Hello World!')
Hello World!

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 22 / 112

A first program

Create a file named hello.py with any text editor
name = input('Your name: ')
print('Hi ' + name)

In a terminal, go to your file’s directory
$ cd ~/devel/Python
$ pwd
/home/john/devel/Python
$ ls
hello.py
$ python3 hello.py
Your name: John
Hi John

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 23 / 112

Interactive Python

Interactive mode
Just run python or python3 without a file name as an
argument
A few other interactive interfaces: idle3, bpython, ipython, . . .
It is called an REPL loop:

1 R ead: read user input
2 E val / E xecute: evaluate expression / execute instruction
3 P rint: print out a value if it is an expression
4 L oop: back to step 1.

A specific case for the Print step: when the value is None
nothing is printed

>>> print('Hello')
Hello
>>> print(print('Hello'))
Hello
None

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 24 / 112

How to run a Python program/script?

From the command line on MS Windows or UNIX/Linux
Just give to python3 the file name or path as an argument:

$ python hello.py
Hello World!

From the command line on UNIX/Linux
Add the she-bang line on top of your file:

#!/usr/bin/env python3
print('Hello World!')

Allow execution permission on the file:
$ chmod +x hello.py
$ ls -l hello.py
-rwxr-xr-x 1 john john ... hello.py
$./hello.py
Hello World!

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 25 / 112

Exercise : Ok boomer!

A very simple first program
Ask the user’s name and age
Call the file boomer.py

name = input('Your name:')
age = int(input('Your age:'))

Write greetings then « Boomer! » if the age is more than yours
(or whatever value you want)

$./hello.py
Your name: John
Your age: 42
How are you John?
Boomer!

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 26 / 112

Programming best practices
Generally

Comment your code : everything following a sharp «#» is
ignored by the compiler
Name object according to their meaning: name, price,
products, and not a, b, data
Read carefully compiler and runtime error messages

Specifically in Python
Document your scripts, your fonctions, classes, modules
Easy: write a few lines of text enclosed by three quotes or
double quotes at the beginning of file or bloc of code

#!/usr/bin/env python3
'''This program asks for the user's name
then outputs a somewhat ironic greeting.'''

It’s more than a mere comment, it may be shown by a call to
help()

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 27 / 112

Python specifics
Off–side rule

Introducing a bloc of code (after the if instruction for instance)
is done by a colon + a new line then indenting the lines by
introducing the same amount of space at the beginning of each
line of the bloc
Use 4 spaces (no more, no less, no tabs)
A bloc ends when indentation is back to the previous level
Very peculiar way to do it. . .

{ and } in C, C++, Java, C#, Perl, PHP, . . .
(and) in LISP et Scheme, Begin and End in Pascal
among many others. . .

if age > 42:
print('Boomer!')
print('No offense.')

print('Bye ' + name + '!')

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 28 / 112

Python specifics

No variables (or names) declaration
Just assign a value to them: name = 'John'
Nevertheless Python is strongly typed: usually no automatic
conversion between types
>>> '42' > 32
TypeError: '>' not supported between instances
of 'str' and 'int'
>>> int('42') > 32
True

What about non-existing names?
>>> product
NameError: name 'product' is not defined

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 29 / 112

Data and objects

Data
Object stored in memory by the Python Virtual Machine
Memory is allocated when needed
Will be freed later if the object is not in use anymore
(referenced), this is the garbage collector job
Every object has a type

>>> 42
42
>>> type(42)
<class 'int'>
>>> type('John')
<class 'str'>
>>> id(42) # memory address
9080320

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 30 / 112

Objects and names

A new name is created by an assignment
>>> name = 'John'
>>> age = 42 + 13
>>> type(name)
<class 'str'>
>>> type(age)
<class 'int'>
>>> id(name)
140240346121136

A name can be deleted
>>> del(age)
>>> age
NameError: name 'age' is not defined

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 31 / 112

Références

Every name is actually a reference
Strictly speaking it is not a variable
Several names can reference the same object

>>> food = 'spam'
>>> bad = food
>>> id(food)
140240345726680
>>> id(bad)
140240345726680
>>> food is bad
True

Comparing references and objects
is to know if it is the same object in memory
== to know if two objects have the same value

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 32 / 112

Numeric built-in types
Family of compatible types

int: signed integers, unbounded
float: floating point numbers
complex: complex numbers
You can freely use them alltogether in various kind of
expressions:
>>> price = 42
>>> maximum = 49.99
>>> length = 42.0
>>> z = 1 + 2j
>>> price <= maximum # less or equal
True
>>> price == length
True
>>> (z - 1) ** 2 == -4
True

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 33 / 112

Numerical operators

Arithmetic
+, -, * (product), /, (division), // (floor division), ** (power)
% : modulo (euclidean division remainder)
~, ˆ, |, &: bitwise operators
Each of these is a call to a dunder method: __add__,
__mul__, . . .
Complex numbers have attributes: z.real, z.imag
More on this later, when we’ll deal with classes and objects

Usual priority rules apply, you can use parenthesis to group
sub-expressions.
>>> 1 + 2 * 3 == (1 + 2) * 3
False

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 34 / 112

Characters string type

Strings
str: collection of characters
Litterally expressed by enclosing text with quotes, double
quotes or three of consecutive of these enclosing characters

>>> name = '''John'''
>>> msg = "It's not Joe"
>>> text = 'He is a "boomer", really?'

As in many other languages backslash has a specific meaning in
strings

To insert the litteral inclosing char 'it\'s a "boomer"'
To insert a special character: end of line \n, smiley
\N{grinning face with smiling eyes}, tab \t

Outside of strings a blackslash allow you to break lines without
breaking the Python off-side rule
chr(n) is character of code n, ord(c) is the code of character c

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 35 / 112

Strings operations

Operators
+ : concatenate
* : repeat n (integer) times
in : look up for a substring

>>> 'John' + ' ' + 'Cleese'
'John Cleese'
>>> 'spam ' * 4
'spam spam spam spam '
>>> 'spam' in 'ham egg spam sausage'
True

Functions
len() : length, works for all kind of collections
int() : integer conversion (error if not possible)
float() : conversion into floating point number

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 36 / 112

Operators and assignments

It is quite usual to use an operator then assign the result to the
initial name

>>> food = 'egg '
>>> food = food + ' spam'
>>> food
'egg spam'
>>> age = 42
>>> age = age + 1

A shortcut: operator=
>>> food += ' spam'
>>> age += 1
>>> qty *= 2
>>> price /= 2

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 37 / 112

Functions

A function is an object that may be called
>>> len # object
<built-in function len>
>>> type(len) # with a type
<class 'builtin_function_or_method'>
>>> len('spam') # call: func()
4
>>> int('42')
42

>>> 'spam'(42)
TypeError: 'str' object is not callable

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 38 / 112

Methods

A method is a function inside an object’s name space
It may modify the object or return another object

>>> food = 'spam'
>>> food.upper() # new object
'SPAM'
>>> food.isupper()
False
>>> food # unchanged
'spam'
>>> food.startswith('spa')
True

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 39 / 112

Building complex strings

Putting up together constant and variable parts
>>> price = 42; prod = 'spam'
>>> "Price of " + prod + ' is ' \

+ str(price - 10) + '€'
'Price of spam is 32€'

More convenient: str.format method
>>> 'Price of {} is {}€'.format(prod,price - 10)

Since Python 3.7 : even better!
>>> f"Price of {prod} is {price - 10}€"

A lot of control is possible on string formating, look for str.format
and « f-strings » in the manual.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 40 / 112

How to find out about all these functions and methods?
Read the fine manual!

http://docs.python.org/3.7/
You can ask for help from the interactive interpreter help(),
help(str)

You can ask Python for names in a namespace!
>>> dir(__builtins__) # built-in names
[...'dir', ... , 'int', ..., 'len', ..., 'str', ...]
>>> dir(str) # methods on strings
[..., 'lower', ..., 'isupper', ..., 'upper', ...]
>>> import math
>>> dir(math)
[..., cos , factorial, ..., pi, ..., sin, ...]
>>> from math import sin,cos,pi
>>> sin(pi/4) + cos(pi/4)
1.414213562373095
© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 41 / 112

http://docs.python.org/3.7/

Booleans
bool type

Values True or False
This is what operators like ==, !=, <, <=, >, >=, is, is not
return
Logical expressions can be build by or, and, not and
parenthesis

What is if expression: doing?
First it converts the expression into a boolean:
bool(expression)
For 0, 0.0, '', None ; bool(...)is False, otherwise True
An empty collection is False, any non-empty is True
If the result is (True), if executes the following bloc of code

price = 42
if price:

print("It is not free...")

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 42 / 112

The if instruction

if allows an optional following bloc else
if 'spam' in food:

food += ' more spam'
else:

food += ' spam' # spam is mandatory!

Several tests can be chained by elif (else if) before the
optional else clause

if 'spam' in food:
food += ' more spam' # more spam!

elif 'egg' in food:
food += ' spam' # free spam!

else:
food += ' spam spam' # double spam!

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 43 / 112

if as an expression

The syntax if: ...: ... else: denotes an instruction
You can denote an expression instead:

>>> price = 42
>>> 'expansive' if price > 50 else 'cheap'
'cheap'
>>> price = 57
>>> 'expansive' if price > 50 else 'cheap'
'expansive'

Python’s expressiveness: readable, consise, powerfull!
msg = 'You have ordered {} product{}'.format(n,

's' if n > 1 else '')

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 44 / 112

Exercise : English Breakfast
Ordering food

If some spam is ordered, add good!, else if some ham is ordered
add spam and last, (if neither spam, nor ham have been
ordered) add egg
Use only string operators (in, +)
Everythin following Command here is user input, the rest is the
program output:

$ python3 breakfast.py
Command: ham egg
Delivered: ham egg spam
$ python3 breakfast.py
Command: ham sausage
Delivered: ham sausage spam
$ python3 breakfast.py
Command: ham spam bacon
Delivered: ham spam bacon good!

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 45 / 112

Now modify your script to add 10 times spam if ever some ham
has been ordered

>>> ' covfefe' * 3
' covfefe covfefe covfefe'

Compute and output how much spam will be delivered:
The count method on strings determine how much times a
sub-string is present

>>> 'to be or not to be'.count('to')
2

Modify your program accordingly
After the if : elif: else: instruction:

$ python3 breakfast.py
Command: ham sausage
Delivered: ham sausage spam
Spam : 1

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 46 / 112

What about ordering an hamburger?
Now try to order an hamburger
How much spam have you got? Why?
Oh, God, this is a bug. . .

>>> 'ham' in 'egg hamburger coffee'
True

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 47 / 112

Collections

Objects that contains multiple references to other objects
>>> menu
['ham', 'spam', 'egg', 'sausage']
>>> prices
{ 'ham': 42, 'spam': 12, 'sausage': 20 }
>>> prices['spam']
12

A first kind of collection: lists
>>> menu = ['ham', 'spam', 'egg', 'sausage']
>>> menu[0]
'ham'
>>> len(menu)
4

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 48 / 112

Lists

Litteral expression for a list [expression, ...]
Expressions enclosed by brackets, separated by commas
Can contain any type: str, int, list, etc.
Can easily be build by splitting a string

>>> data = ['a', 42, 12, -3.14, cos(pi)]
>>> table = [[-2, 4], [7, 0]]
>>> food = 'ham spam egg bacon spam'.split()
>>> help(str.split)

You can access to collections items with an index
First item is at index 0

>>> data[0]
'a'
>>> table[1][0]
7

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 49 / 112

Extracting items and modifying lists

You can change what is the reference at a given index
>>> food[3] = 'sausage'

Negative indices start from the end
>>> food[-1]
'bacon'
>>> food[-2]
'egg'

You can extract sub-lists (slices)
>>> food[2:4]
['spam', 'egg']

Note that we have extracted a slice from index 2 to index 4 - 1 = 3.
The item at the last index of a slice is not included.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 50 / 112

Operators for lists
Operators +, * and in/not in

>>> food = ['ham', 'spam']
>>> food + ['egg', 'sausage']
['ham', 'spam', 'egg', 'sausage']
>>> food * 2
['ham', 'spam', 'ham', 'spam']
>>> 'spam' not in food
False
>>> 'cheese' in food
False

You can get a string back from a list of strings
>>> ' ; '.join(food * 2)
'ham ; spam ; ham ; spam'

You may be puzzled, as this is not list.join(sep) but
sep.join(list)

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 51 / 112

Exercises : from strings to lists

Refactoring the previous exercise solution:
Store the ordered food in a list of strings
Then all tests will be made on that list instead of a unique
string
Is there much code to change?
Is there a count method for lists? Is it running as expected?
Bring back strings in the game by displaying the whole
command like this:

**** Fawlty Towers Hotel ****
ham
...
bacon
**** Service not included ****

Is the hamburger bug still there? Why?

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 52 / 112

Exercise: instrospection on lists

Ask Python for all available methods on lists
Ignore at that time the ones enclosed by __

>>> myFood = ['spam', 'egg']
>>> dir(list)
...
>>> help(list.index)
>>> myFood.index('spam')

Try to guess and experiment to determine which ones are modifying
the list they are called on and which one are returning another
object (either a list or not)

What is the sort method doing on a list? What is it returning?
Compare with the function sorted.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 53 / 112

Modifying a list

A single item may be changed
>>> food = ['spam', 'ham', 'egg']
>>> food[1] = 'sausage'
>>> food
['spam', 'sausage', 'egg']

Some methods modify lists too
>>> food.append('pudding')
>>> food.remove('spam')
>>> food.pop()

insert, reverse, sort, extend, clear

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 54 / 112

A list can be modified by assigning a sequence to a slice

A very expressive way to modify a data set
>>> food = 'spam ham egg sausage cheese'.split()
>>> food[1:3]
['ham', 'egg']
>>> food[1:3] = []
>>> food
['spam', 'sausage', 'cheese']
>>> food[1:2]
['sausage']
>>> food[1:2] = ['spam', 'pudding', 'beans']
>>> food
['spam', 'spam', 'pudding', 'beans', 'cheese']

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 55 / 112

Sequences unpacking

Allow to extract information from a sequence into names
>>> product = ['spam', 42]
>>> food, price = product
>>> food
'spam'
>>> price
42

You can use slices in order to match the number of names, and
repack sub-sequences

>>> product = ['spam', 42, 'good', 10]
>>> food, price = product[:2]
>>> food, price, *end = product
>>> end
['good', 10]

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 56 / 112

Another kind of collection: Dictionaries
Dictionaries: keys and values

>>> pricedb = { 'spam':12, 'ham':42, 'egg':10 }
>>> pricedb['ham']
42
>>> 'ham' in pricedb # looks for keys
True

A dictionary can be altered
>>> pricedb['beans']
KeyError: 'beans'
>>> pricedb['beans'] = 7; pricedb['beans']
7
>>> pricedb.get('spam')
12
>>> pricedb.get('tomatoes',0)
0

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 57 / 112

Another Python collection: tuples

Tuple : immutable sequence (similar to lists but cannot change)
You can access to items exactly like if it were a list (indices, slices,
unpacking)
>>> foods = ('spam', 'ham', 'egg', 'beans')
>>> prices = (12, 42, 10, 7)
>>> foods[2]
'egg'
>>> foods[1:3]
('ham', 'egg')
>>> prices[1] = 44
TypeError: 'tuple' object does not support item
assignment
>>> prices_list = list(prices)
>>> prices_list[1] = 44; prices_list
[12, 44, 10, 7]

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 58 / 112

Another kind of Python collections: sets

set and frozenset : mutable an imutable sets
>>> food = { 'spam', 'ham', 'egg', 'ham' }
>>> len(food)
3
>>> food
{ 'spam', 'ham', 'egg' }

Useful (but non only) to remove duplicates
>>> food = ['spam', 'ham', 'egg', 'ham', 'spam']
>>> food = list(set(food))
>>> food
['ham', 'spam', 'egg']

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 59 / 112

Immutable and mutable

Among all built-in types we have been talking about, which ones are
mutable or immutable?

Immutable
Numbers : int, float, complex
Strings : str
Tuples : tuple
Frozen Sets : frozenset
Booleans bool, NoneType

Mutable
Lists : list
Dictionaries : dict

But keys must be of an immutable type
Sets : set

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 60 / 112

Types conversion
We can convert across most collections

>>> int('42')
42
>>> list('spam')
['s', 'p', 'a', 'm']
>>> tuple([1, 2, 3])
(1, 2, 3)
>>> list((1,2,3))
[1, 2, 3]
>>> ''.join(['s', 'p', 'a', 'm'])
'spam'

All types names (str, int, list, . . .) are functions
Try to do their best to convert into the specified type, may fail
with error
Without argument returns zero, void, false, nothing, . . .

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 61 / 112

for loop statement (instruction)
for allow to walk through a collection

>>> foods = 'spam egg ham'.split()
>>> for food in foods:

print(food)
spam
egg
ham

Works for all collections (more generally any iterable)
Lists, including slices
Tuples, including slices
range(n,m,p) : integers from n to (m-1) with step p
Dictionaries (goes through the keys)
Sets
and also (iterables) : files, database queries, CSV file readers,
. . .

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 62 / 112

Loops and unpacking

Items can be collections (lists, tuples, strings)
>>> foods = [('spam', 12), ('ham', 42)]
>>> for elt in foods:

print(elt) # a sequence (tuple)
food, price = elt # items
print(food,price)

('spam', 12)
spam 12
('ham', 42)
ham 42

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 63 / 112

for can walk through items and unpack them

All in one go!
>>> foods = [('spam', 12), ('ham', 42)]
>>> for food, price in foods:

print(food,price)
spam 12
ham 42

Especially convenient for dictionaries!
>>> prices = { 'spam':12, 'ham':42 }
>>> for food, price in prices.items():

print(food,price)
spam 12
ham 42

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 64 / 112

Reading a simple text file

Let’s read a simple file digits.txt the same way!
one 1
two 2
...
nine 9

A for loop iterates through the file
for line in open('digits.txt'):

print(line.rstrip()) # remove trailing line feeds,
anyway print adds his own

Output
one 1
two 2
...

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 65 / 112

Doing better

Using with statement and processing data
with is a statement making sure that the bloc is not executed in the
case of failure in opening file(s) and it will close them if needed.

with open('digits.txt') as input:
for line in input:

word, value = line.rstrip().split()
value = int(value)
print('{} is called {} ' \

'in English'.format(value,word))

Don’t reinvent the wheel
It is even simplier for a CSV file or a database: for a CSV file, csv
module takes care of spliting lines, a database DB connector even
takes care of datatypes.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 66 / 112

Exercice : Menu à la carte

A new script alacarte.py built on the previous one
Again ask the user to order various foods and store all of them in a
list.

Display all of them with a for loop
Assign an empty list to a name up_foods
In another for loop going through the list of ordered foods add
each of them, changed to uppercase, in up_foods
Display up_foods items

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 67 / 112

The bill. . .

Create a file prices.txt like this:
ham 42
spam 12
beans 8
sausage 11
cheese 10
...

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 68 / 112

The bill (continued)

The bill!
Read that file and store the relevant information into a
dictionary (you can start from an empty dictionary {})

with open(...) as ...:
pricedb = {}
for line in ...:

prod, price = line.rstrip().split()
price = float(price)
pricedb[prod] = price

print(price)
Display the bill including every item, its price and the total
amount to be paid for breakfast.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 69 / 112

Exercise : Cryptography

Build the alphabet
In a loop make i vary from the code of ‘a’ to the code of ‘z’

range(ord('a'), ord('z') + 1)
At first display chr(i)
Modify the loop to append chr(i) to a list:
alphabet = []
for i in range(ord('a'), ord('z') + 1):

add chr(i) to alphabet
...

print(alphabet)

Let’s change the letters
Given a latin ASCII letter with code k - What is this doing?

secret = 5
chr((k - ord('a') + secret) % 26 + ord('a'))

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 70 / 112

Exercise : Cryptography (continued)

This is what Julius Cesar did during Gallic Wars!
Ask the user for a whole sentence
Loop the string, for all letter you will display another letter:
chr((ord(c) - ord('a') + 5) % 26 + ord('a'))
Display these characters with: print(..., end = '')

for c in text.lower():
if c in alphabet:

print(..., end = '')
else:

print(c)
print()

Building alphabet was useless, we reinvented the wheel:
>>> import string
>>> string.ascii_lowercase
'abcdefghijklmnopqrstuvwxyz'

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 71 / 112

Another loop statement: while

Another instruction: while
Execute a bloc while a given condition is true:

>>> ans, menu = '', []
>>> while ans != 'spam': # ask for spam to end
... ans = input('Food: ')
... menu.append(ans)
...
Food: ham
Food: egg
Food: spam
>>> print(menu)
['ham', 'egg', 'spam']

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 72 / 112

Control of execution flow
Escaping from for and while loops: break

When you have encountered a anomaly, found what you were
looking for, an user asks to quit
With an optional else statement you can execute code only if
the loop exited “normally” (no break)

while True:
ans = input('Name (!END to quit) : ')
if ans == '!END':

break

You can jump to the next iteration with continue
for line in input:

if line.startswith('#'):
continue

data = line.strip().split()
.... # Process data in line

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 73 / 112

Comprehensions
A expression build with for
Building a list from another one with a pure functional expression.
>>> foods = ['spam', 'ham', 'egg', 'beans']
>>> [food.upper() for food in foods]
['SPAM', 'HAM', 'EGG', 'BEANS']

You can filter out items
>>> [food.upper() for food in foods \

if food != 'egg']

And use if as an expression too
. . . if test else . . . we’ve seen before
>>> [food.upper() if food != 'spam' else 'beuh' \

for food in foods \
if food != 'egg']

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 74 / 112

Other datatypes

Various modules extend built-in datatypes
collections provides defaultdict, namedtuple, deque, Counter
enum provides Enum
array provides arrays of homegeneous data
Examples at:
https://framagit.org/jpython/miscellaneous-python

text = 'to be or not to be'.split()
d = defaultdict(int)
for w in text:

d[w] += 1
for w,n in d.items():

print('{}: {} times'.format(w,n))
print(Counter(text)) # no need for loop...

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 75 / 112

https://framagit.org/jpython/miscellaneous-python

Loops under the hood: iterators
The iteration protocol

All objects that obey the iteration protocol can be used in for
loops and are sequence-like objects
All collections follows the iteration protocol

>>> it = iter(['spam','ham'])
>>> next(it)
'spam'
>>> next(it)
'ham'
>>> next(it)
StopIteration

They are everywhere
Opened files, CSV readers, DB requests, . . .
Views on dictionaries (items, values, keys)
zip, enumerate, . . .

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 76 / 112

Iterators

Building iterators
itertools module provides more ways to build iterators
chain, product, repeat
Comprehension iterators:
squares = (x**2 for x in range(10))
for elt in squares:

print(elt)

More on this later
Can be build by functions using the yield instruction
Can be build by objects implementing specific dunder methods
__iter__, __next__ and raising StopIteration if needed

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 77 / 112

Functions

A function allows to name and reuse code
Defined by the def instruction

>>> def printLicense():
print('Available under the terms')
print('of the WTFPL license')
print('more at: http://www.wtfpl.net/')

>>> printLicense()
Available under the terms
of ...

If the file wtfpl.py defines this function you can use it as a
library module yet!

>>> from wtfpl import printLicense
>>> printLicense()

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 78 / 112

Arguments and return values

A function may receive arguments
>>> def cry_if_spam(string):

if 'spam' in string:
print("I do not like SPAM!!!")

>>> cry_if_spam('ham egg')
>>> cry_if_spam('ham spam egg')
I do not like SPAM!!!

A function can return something (otherwise it is None)
>>> def where_is_spam(menu):

return menu.index('spam')
>>> where_is_spam(['egg', 'ham', 'spam', 'beans'])
2

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 79 / 112

Optional arguments

Just provide a default value
>>> def price_of(food, discount = 0):

prices = { 'spam': 12, 'ham': 42 }
price = prices.get(food, 0)
price *= (100 - discount)/100
return price

>>> price('ham',10)
37.8
>>> price('ham')
42

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 80 / 112

Calling functions

Arguments can be passed by position
>>> price_of('food',10)

Or by keywords
>>> price_of(discount = 20, food = 'spam')

Or both. . . like when using the print function
>>> print('spam', 'ham', 'egg', 42, sep='\n')

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 81 / 112

Variable positional arguments

You can define a function accepting an unknown numbers of
positional arguments
def sum_of_squares(*args):

return sum([elt ** 2 for elt in args])

print(sum_of_squares(1,4,42,12))

You can unpack a sequence as arguments
foods = ['spam', 'ham', 'egg']
print(*foods)

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 82 / 112

Collecting and unpacking keywords arguments

You can collect keyword arguments in a dictionary
def insert_into_db(**kwargs):

create_user(name=kwargs['name'])
set_food(kwargs[name],food=kwargs['food]')

insert_into_db(name='Joe', food='spam')

You can unpack a dictionary as keyword arguments
user_info = { 'name':'John', 'food':'spam' }

display_form(**user_info)

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 83 / 112

Names and scopes
Whenever a name is dereferenced

First a lookup is done locally (at function level)
Then in all enclosing functions (if any nested def)
Then globally (at script or module level)
And last at built-in level
This is the LEGB rule

When you assign a name
Instruction = or operator= (not all the time for the latest)
Only local scope is altered
You can override this, this is a bad idea

Modifying arguments
As every name is a reference, arguments are received as such
If an argument is mutable and is modified – say
data.append(. . .) – it will be seen from “outside”

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 84 / 112

Generator functions

Another way to build iterators
Use yield instruction to release value through next() calls
return None to raise StopIteration
Lazy evaluation

def genSq(start=0, end=10):
while True:

if start < n:
yield start**2
start += 1

else:
return None

for i in genSq():
print(i)

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 85 / 112

Lambda anonymous functions
Building a function without a name
>>> (lambda x,y: x**2 + y**2)(2,3)
13
>>> f = (lambda n: sum(range(n)))
>>> f(42)
861

LISP-ish construction related to Church lambda-calculus
Useful for a quick definition
You can put functions in collections and evaluate them later
To pass a one-shot function as an argument

>>> area['rectangle'](2,3) + area['triangle'](2,3)
9.0
>>> from functools import reduce
>>> reduce((lambda x,y: x*y), range(1,10))
362880

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 86 / 112

Exercice : Professional Breakfast

From a previous exercise solution
We can read and store information about various foods from a file.

1 Write a function returning the price of a food
2 Write a function accepting a list of ingredients and returns the

total prices if one orders all of them
3 Test this function with a list of foods
4 Rewrite the function to accept directly all foods as arguments

instead of a single list. Call it by passing the list of foods
unpacked.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 87 / 112

Debugging

Read and interpret error messages
Python is raising the error as close as possible to the real issue
Interpret exceptions:

is not callable : this is not a function
has no attribute. . . : typo in method, bad type or unsupported
operator

Add debugging code
print(), sys.stderr.write()
logging module

Step by step debugging
pdb from the command line
pdb can be driven by an IDE like PyCharm or Eclipse with
PyDev extension, Spyder

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 88 / 112

Unit test
Various tools and modules

unittest from the standard library
pytest can be installed easily
nose is a very popular fork of pytest

Example with nose
from yourmodule import price_of
def test_price_of_food():

p = price_of('ham')
assert p == 42
p = price_of('spam')
assert p == 12
p = price_of('notfood')
assert p == 0
p = price_of('ham',10)
assert p == 42 - 42/10

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 89 / 112

Running tests with nose

Just run nosetests
$ nosetests test_priceof.py
....

Ran 4 test in 0.001s
OK

You can even get a test coverage report
$ nosetests --with-coverage \

--cover-html \
test_priceof.py

$ firefox cover/index.html &

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 90 / 112

Exercise: Spy against Julius Cesar

Context
In Gallic Wars Julius Cesar explained the cryptographic system he
used: a circular permutation on the latin alphabet.

The story
We have intercepted an encrypted message from the Romans. We
happen to know that it contains the word spam. We have to break
that code!

Here is the message:
Z UF EFK CZBV JGRD RK RCC!!! Z UF EFK NREK KYRK!
A'VJGVIV HLV MFLJ MFLJ VKVJ RDLJVJ GVEUREK TV TFLIJ...

Break the code!

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 91 / 112

Steps for breaking the code

Encode char and string
Write a function encode_char(c,n) returning the encrypted
result for char c if it is a letter, c otherwise (help yourself with
the string module)
Write a function encode_string(msg,n) returning the
encrypted version of string msg
Write a decode_string function

Brute force
In a loop try to decode the secret message with key k with k
looping over range(1,26)
Break if the hint (‘spam’) has been food and display the
decyphered message
An else clause at the end of the loop allows you to handle
failure (or you can use a boolean flag)

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 92 / 112

What is Object Oriented Programming?

An object is a container
It has attributes: all are Python objects
Some are data: lists, integers, strings, . . .
Others are methods: functions acting on/using the object

A class is a template for objects
A given object is an instance of a class
Class are basically the same thing as types in Python

An instance can be built by calling the constructor
In Python a special method called __init__
Strictly speaking this is an initializer
As all methods it will receive self as a first argument
Usually populates attributes from arguments

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 93 / 112

Example: the built-in complex class
Built-in types usually have a litteral syntax
>>> z = 1 + 2j # instance of complex
>>> type(z) # its class
<class 'complex'>
>>> z.real # instance data attribute
1.0
>>> z.conjugate() # a method call
(1-2j)
>>> dir(z) # all instance attributes

They are still objects as any others
>>> z = complex(1,2)
>>> z + (1 + 3j)
(2+5j)
>>> z.__add__(1 + 3j)
(2+5j)

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 94 / 112

Object Oriented Programming

Python is object oriented from the ground up
Every type is a class
Everything is an object

You can create your own classes
Specify in __init__ method what to do at initialisation time
Will be called when creating an instance of that class
class Point:

Called implicetely by Point(x,y,label)
def __init__(self,x,y,label):

self.x = x
self.y = y
self.label = label

def show(self):
print('{}({}, {})'.format(label,x,y))

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 95 / 112

Normal and dunder methods

Normal methods are called by their names
p = Point(3, 4, 'center')
p.show() # same as Point.show(p)

Specials methods called implicitely
__init__ at initialisation stage
__add__, __sub__, __mul__, . . . for +, –, *, . . . operators
__str__ when converted into string
__repr__ when displayed in REPL

def __str__(self):
return '{}({}, {})'.format(label,x,y)

def __repr__(self):
return 'Point({}, {}, {})'.format(x,y,label)

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 96 / 112

Specials methods and operators

How is an expression with an operator evaluated?
When evaluating a + b. . .

First a.__add__(b) is tried
Which is actually (class of a).__add__(a,b)

Then b.__radd__(a) is tried
Which is actually (class of b).__radd__(b,a)

It’s not a big deal to overload operators. . .
Just define __add__, __sub__, __mul__, . . .
Don’t shoot yourself in the foot though!

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 97 / 112

Inheritance
A class can inherit from another one

The subclass can redefine and add methods and attributes
Either from built-in, modules or custom classes
Multiple inheritance is supported
from enum import Enum
from operator import add
class Move(Enum): # Inherit from Enum

UP = (0 , -1) # No need for __init__
DOWN = (0 , 1) # Just provides allowed
RIGHT = (1 , 0) # constant values
LEFT = (-1 , 0) # as class attributes
called when evaluating coord + self
def __radd__(self,coord):

return tuple(add(*t) for t in
zip(self.value, coord))

print((3,4) + Move.UP)

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 98 / 112

Modules

Any Python script is already a module
Just import mymodule.py the way you want:

import mymodule
mymodule.myfunc(42)
from mymodule import myfunc
myfunc(42)
import mymodule as mm
mm.func(42)

Conditional execution
You can execute code only if executed, i.e. not imported

if __name__ = '__main__':
Test code, not executed if imported

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 99 / 112

Exercise: Objects and inheritance

Moving a tuple of coordinates the other way around
Instead of inheriting from Enum for a move, create a class
Coord inheriting from tuple
Define the __add__ method which is called when a tuple is
added to it (instead of defining __radd__ in the Move type)

>>> c = Coord(3, 4)
>>> print(c + Move.UP)
(3, 3)

Define the __str__ method:
>>> print(c + Move.UP)
Coord(3, 3)

You can also do sanity checks
if not isinstance(move.value, tuple) \

and len(move.value) == 2:
raise ValueError('Not a 2-valued tuple')

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 100 / 112

More on objects
Things to know about Python classes and objects

Parent methods can be called in overrided methods
def __init__(self, ...):

my stuff ...
super().__init__(...) # no self

def mymethod(self, ...):
my stuff ...
super().mymethod(...) # no self

There are no private attributes or methods
Mark internal attributes with a prefix _ or __
Then then won’t appear in help(YourClass)

Class names usually should have a leading capital (PEP 8)
You can define class methods and static methods
You can create accessors (i.e. calling functions implicitely when
dereferencing/assigning a name)
Most of this is based on decorators

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 101 / 112

Installing modules

Modules available on PyPI
All modules on pypi.org are installable with pip
Especially convenient in a virtual environment

$ python3 -m venv venv
$ source venv/bin/activate
MS Windows: venv\Script\activate.bas
(venv) $ pip install requests
(venv) $ python3
>>> import requests

Anaconda
Anaconda suite provides a similar tool: conda

(base) $ conda install ...

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 102 / 112

Anaconda

Anaconda is a single package installing Python and a huge set
of modules and tools

IPython : improved REPL command line interface
numpy : efficient number and multi-dimensionnal arrays
computation
pandas : data indexing, querying and aggregation
Both provide objects with similar interfaces (iteration protocol,
method names) to built-in Python or array module objects
Interface nicely with CSV files, SQL databases, even Excel files
scipy : numerical analysis, linear algebra, statistics
scikit-learn : classification, clustering, regression
matplotlib, seaborn : data visualization, imaging

Note that all these package may also be installed independantly
from Anaconda by pip.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 103 / 112

Anaconda

Graphical User Interface
anaconda-navigator gives access to most graphical tools
Jupyter : notebook oriented Web interfaces
Spyder : Integrated Development Environment
PyCharm can also interfaces itself with Anaconda

More packages (set of modules) can be installed by conda
command.

Notebooks
You can share notebooks IPython files saved by Jupyter
Many are available on the Internet

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 104 / 112

Numpy
Efficient numerical and array types

>>> import numpy as np
>>> np.array([[1,2,3] , [4,5,6]])
array([[1, 2, 3],

[4, 5, 6]])
>>> t = np.array([[1, 2, 3] , [4, 5, 6]])
>>> type(t[0][1])
<class 'numpy.int64'>
>>> t = np.array([[1, 2, 3] , [4, 5.0, 6]])
>>> type(t[0][1])
<class 'numpy.float64'>

Mathematical functions
>>> np.exp(t)
array([[2.71828183, 7.3890561 , 20.08553692],

[54.59815003, 148.4131591 , 403.42879349]])

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 105 / 112

Arrays in numpy
Arrays creation

Can be generated from sequences, constant or random values,
ranges, files
Can be reshaped, iterated through, flattened
Items can be addressed by single or multiple index, slices

Operations on arrays
Functions acting on elements
Linear algebra (transpose, multiply)
Compound functions (sum, mean, average, . . .)
>>> np.sum(t)
21.0
>>> np.sum(t, axis=0)
array([5., 7., 9.])
>>> np.sum(t, axis=1)
array([6., 15.])

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 106 / 112

Pandas series

Build on top of Numpy
Dictionary-like indexing
Both sequence-like and dictionary-like objects
>>> data = pd.Series([42.42, 3.14, 1.0],

index=['price','size','weight'])
>>> data['price']
42.42
>>> data
price 42.42
size 3.14
weight 1.00
>>> data['size'] == data[1]
True

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 107 / 112

Pandas series

Database-like object
>>> data.where((lambda x: x > 2))
price 42.42
size 3.14
weight NaN
dtype: float64

Filtering out NaNs
>>> data.where((lambda x: x > 2)).dropna()
price 42.42
size 3.14
dtype: float64

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 108 / 112

Pandas dataframes

Both are build on top of np.arrays
Series are general sequence and dictionary-like one dimensional
objects
Dataframes are general sequence and dictionary-like
two-dimensional objects

>>> prices = pd.Series({ 'spam':12.5, 'egg':4.3 })
>>> qty = pd.Series({ 'spam':4, 'egg':12 })
>>> stock = pd.DataFrame({ 'price': prices,

'qty': qty })
>>> stock

price qty
spam 12.5 4
egg 4.3 12

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 109 / 112

Dataframe manipulation

You can add columns like you add dictionary entries
>>> stock['value'] = stock['price'] * stock['qty']
>>> stock

price qty value
spam 12.5 4 50.0
egg 4.3 12 51.6

And aggregates values
>>> stock.sum()
price 16.8
qty 16.0
value 101.6

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 110 / 112

Data filtering

>>> stock[stock.price > 5]
price qty value

spam 12.5 4 50.0

How can it works??
Isn’t stock.price > 5 supposed to be a boolean?
No it isn’t! Not at all!
>>> stock.price > 5
spam True
egg False
Name: price, dtype: bool
>>> type(stock.price > 5)
<class 'pandas.core.series.Series'>

Pandas massively overloads comparison operators.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 111 / 112

Numpy, Pandas, Matplotlib, and data science ressources

Python Data Science : book and Jupyter notebooks
https://jakevdp.github.io/PythonDataScienceHandbook/
Scipy/Numpy Introduction
https://sites.engineering.ucsb.edu/~shell/che210d/numpy.pdf
Scikit tutorial
https://scikit-learn.org/stable/tutorial/index.html
Matplotlib Pyplot tutorial
https://matplotlib.org/tutorials/introductory/pyplot.html

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 112 / 112

https://jakevdp.github.io/PythonDataScienceHandbook/
https://sites.engineering.ucsb.edu/~shell/che210d/numpy.pdf
https://scikit-learn.org/stable/tutorial/index.html
https://matplotlib.org/tutorials/introductory/pyplot.html

