Python Programming

Jean-Pierre Messager (jp@xiasma.fr)

27 of September, 2020 — version 1.0b

ol0clo

BY NC ND

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

No commercial use without authorization

LICENSE
Creative Commons Licence Attribution-NonCommercial-NoDerivatives 4.0
International (CC BY-NC-ND 4.0)

This is a human-readable summary of (and not a substitute for) the license :
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

You are free to:

Share — copy and redistribute the material in any medium or format.

The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You
may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

NonCommercial — You may not use the material for commercial purposes.
NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from
doing anything the license permits.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Download this course and exercises

This course is published on a git repository

@ Sign in on https://framagit.org/
@ Send me your id
@ | may promote you as a reporter on this project
o Read access to material and exercises files
e Opening tickets
@ There: https://framagit.org/jpython/python-course
@ Others projects : https://framagit.org/jpython/meta
@ You can access to updates and new versions
@ For every major revision a new tag is created

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

https://framagit.org/
https://framagit.org/jpython/python-course
https://framagit.org/jpython/meta

Python Programming

@ What is Python ?

A first program

Storing and processing data

Collections

Loops

Functions

Debugging and test

Object Oriented Programming

Modules

A few words on Anaconda, NumPy, Pandas

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Storing and processing data

@ Names and references

@ Data types

@ Operators, functions and methods
@ Booleans and conditions

Collections

Data collections

Lists

Changing and extracting data
Others type of collections

Loops

@ Looping through lists
@ Looping through other collections
@ Comprehensions

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Functions

@ Structuring programs
@ Passing arguments

@ Returning values

@ Function calls

Debugging and tests

@ Interpreting error messages
@ Debuggers
@ Unit tests

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Object Oriented Programming

@ Defining new classes
Constructors

Normal and dunder methods
Overloading operators
Inheritance

Modules
@ Importing custom modules
@ Preventing code execution
@ Special methods and attributes

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

History of Python

Python 1

@ Created in 1989-1991 by the Dutch programmer Guido van
Rossum

@ Named as a tribute to the (mainly) British comedy troup
Monty Python

Python 2

@ Supported by the non-profit organization Python Software
Fundation, created in 2008
@ Is no more maintained since 1st of January 2020

Python 3

@ Published in 2008: should be the version you use!

@ Guido van Rossum stepped down as the PSF Benevolent
Dictator For Life in 2018, but is still deeply involved in the
language development

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Programming languages paradigms

Several logical paradigms

@ Imperative programming: bunch of expressions and instructions
o C, Pascal, Fortran

@ Functional programing: calling and returning functions
o LISP, Scheme, CaML, Haskell

@ Object Oriented programming: data and operations are

encapsulated together
e Java, C#, Smalltalk

@ Some languages, like Python, allow various paradigms

Constraining data manipulation

e Déclarative: you have to specify all data types (integer, float,
strings, arrays, ...)

@ Strongly typed: no (or almost no) implicit type conversion

@ Python is strongly typed but not declarative

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Programming languages

Low level languages

@ Explicit memory allocation

@ Compiled to machine code, then translated to binary
Conceptually close to assembly language, but more convenient
Very high performance

Usually used to write operating systems, utilities, and system
libraries

High performance and real time computing, games

@ To name a few: C, C++, D, Fortran, Pascal, PL/1, Ada

Other languages implementations (compilers, interpreters) are
usually written in one of these languages.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 10 / 112

Another way to consider programming languages

High—level mathematical languages

@ Automatic memory allocation

@ Usually interpreted (running on top of a virtual machine)
@ Based on advanced abstract mathematical concepts

@ Examples : LISP, Scheme, CaML, Haskell

High—level pragmatic languages

o Easier to deal with

@ Could lead to bad practices and unmaintable code: BASIC,
PHP, JavaScript

@ Or not: Ruby, Python

This course is based on Python 3.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Python

Created in 1991 by Guido Van Rossum

Focus on readibility, rigor, ease of use and expressiveness
Fit for beginners as well as experienced programmers
Python 2 gained popularity during the 200x

Python 3 is about ten years old now

Free Software (Open Source)

Features

@ Object-oriented from the ground up

@ Multiple paradigms : imperative, functional, object oriented
@ Portable: UNIX, GNU/Linux, MS Windows, ...

@ Very rich set of high level libraries (modules)

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Instructions and expressions

Python makes a difference between expressions and instructions.

An expression compute something and has a value:

42 + 13
"Hello " + name + "!"
len(foodInfo)

Values: 55, ‘Hello John!" (if name is ‘John’) then the length of data
structure foodInfo.

An expression can have a side effect

i.e. “doing something in addition to have a value”
print('Hello!")

The value here is None, a special value in Python aimed to

represent “nothingness”.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Instructions and expressions

An instruction does something

An instruction only has a side effect it has no value!
res = res *x 1 # assignment

if price < 42: # this line and the next one are
print("It's cheap!") # one instruction

An instruction can embbed expressions

msg = 'Hello ' + name
if price > 12 and price < 56:
print("Price ok.")
@ 'Hello ' + name is an expression
@ price > 12 and price < 56 too
@ also print(...)
An expression cannot contain instructions.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Usual errors

Triggered by the compiler

If you write an instruction in a place where an expression is awaited,
an Exception is raised at compilation time:
if i = 1:

SyntaxError: invalid syntax

Untriggered by the compiler (at best you'll get a warning)

Writing down an expression instead of an instruction : what you
asked for is computed but has no practical effect : it is a BUG!
31 + 11
if price == 42:
print ('Good price!')
What was intended:
price = 31 + 11

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Compiled languages

Compiler generate assembly code, then translate to binary

$ gcc -o factorial factorial.c

$ file factorial

factorielle: ELF 64-bit LSB pie executable,
x86_64, version 1 (SYSV), dynamically linked,

$./factorial
Number: 5
120

You can have a look to intermediate assembly code

$ gcc -S factorielle.c
$ less factorielle.s

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 16 / 112

Interpreted languages

@ Most interpreted languages are compiled into a specific format:
the bytecode
e It's a binary format
e Independant of any CPU architecture
e Supposed to be executed by a specific software: a virtual
machine
@ Examples : Java, C#, Python, Perl, ...

Some virtual machines

@ JVM : Java Virtual Machine (Java, Groovy, ...)
e .NET Runtime (C+#, VisualBasic.NET, F#, ...)
@ PVM : Python Virtual Machine

@ Perl 6 : Parrot, MoarVM

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Compiling and executing

Both steps can be separated:

$ javac hello.java

$ 1s
hello.java hello.class

$ java hello
Hello World!

... or taking place in one go:

$ python3 hello.py
Hello World!

Python Programming

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND

Bytecode

You can disassemble a program

In Python the dis module allows you to look at bytecode:

>> 20 FOR_ITER
22 STORE_FAST

4 24 LOAD_FAST
26 LOAD_FAST

28 BINARY_MULTIPLY

30 STORE_FAST

32 JUMP_ABSOLUTE

>> 34 POP_BLOCK

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND

Python Programming

12 (to 34)
2 (i)

1 (res)
2 (1)

1 (res)
20

19 / 112

Libraries

Libraries extend the language

@ Solve a specif problems or help you to solve it
@ A library extends language features:
e Mathematics
o Text processing
o Graphical User Interfaces, Web programming
o Databases access
e etc.
@ Operating systems provides several binary libraries (.d11 for
MS Windows, .so for UNIX and GNU/Linux)

@ You can then install more of them

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 20 / 112

Python libraries

Python Modules

@ Python is “batteries included”: a rich standard library
e Mathematics, text processing, networking, system, ...
e A whole part of the official documentation presents them

@ Third party modules are available http://pypi.org
@ And can be installed very easily by the tool pip

The math module

$ python3
>>> factorial(5)

NameError: name 'factorial' is not defined
>>> from math import factorial

>>> factorial(5)

120

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

http://pypi.org

Programming in Python

Interactive mode

@ Just install Python 3 and you're done!
e On MS Windows do not forgot to ask for PATH variable update
@ Open a terminal (note that in your installation Python 3
command may be either python3 or python)
$ python3 # or python
Python 3.7.3 (default, Apr 3 2019, 05:39:12)

>>> 42 + 13

55

>>> price = 42

>>> price = price / 2

>>> price > 16 and price < 42
True

>>> print('Hello World!')
Hello World!

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 22 /112

A first program

Create a file named hello.py with any text editor

name = input('Your name: ')
print('Hi ' + name)

In a terminal, go to your file's directory

$ cd ~/devel/Python

$ pwd
/home/john/devel/Python
$ 1s

hello.py

$ python3 hello.py

Your name: John

Hi John

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Interactive Python

Interactive mode

@ Just run python or python3 without a file name as an
argument
o A few other interactive interfaces: idle3, bpython, ipython, . ..
@ It is called an REPL loop:
@ R ead: read user input
@ E val / E xecute: evaluate expression / execute instruction
© P rint: print out a value if it is an expression
© L oop: back to step 1.
@ A specific case for the Print step: when the value is None
nothing is printed
>>> print('Hello')
Hello
>>> print (print('Hello'))
Hello
None

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 24 /112

How to run a Python program/script?

From the command line on MS Windows or UNIX/Linux

Just give to python3 the file name or path as an argument:
$ python hello.py
Hello World!

From the command line on UNIX/Linux

@ Add the she-bang line on top of your file:
#1/usr/bin/env python3
print('Hello World!')
@ Allow execution permission on the file:
$ chmod +x hello.py
$ 1s -1 hello.py
-rwxr-xr-x 1 john john ... hello.py
$./hello.py
Hello World!

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Exercise : Ok boomer!

A very simple first program

@ Ask the user's name and age
o Call the file boomer.py
name = input('Your name:')
age int (input ('Your age:'))
@ Write greetings then « Boomer! » if the age is more than yours
(or whatever value you want)
$./hello.py
Your name: John

Your age: 42
How are you John?
Boomer!

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 26 / 112

Programming best practices

Generally

@ Comment your code : everything following a sharp «#» is
ignored by the compiler

@ Name object according to their meaning: name, price,
products, and not a, b, data

@ Read carefully compiler and runtime error messages

Specifically in Python

@ Document your scripts, your fonctions, classes, modules
@ Easy: write a few lines of text enclosed by three quotes or
double quotes at the beginning of file or bloc of code
#!/usr/bin/env python3
"'"'"This program asks for the user's name

then outputs a somewhat ironic greeting.'''
@ It's more than a mere comment, it may be shown by a call to
help()

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Python specifics
Off-side rule

@ Introducing a bloc of code (after the if instruction for instance)
is done by a colon + a new line then indenting the lines by
introducing the same amount of space at the beginning of each
line of the bloc

@ Use 4 spaces (no more, no less, no tabs)

@ A bloc ends when indentation is back to the previous level

@ Very peculiar way to do it. ..
e { and } in C, C++, Java, C#, Perl, PHP, ...
e (and) in LISP et Scheme, Begin and End in Pascal
e among many others. ..

if age > 42:
print ('Boomer! ')
print('No offense.')
print('Bye ' + name + '!')

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 28 / 112

Python specifics

No variables (or names) declaration

@ Just assign a value to them: name = 'John'

@ Nevertheless Python is strongly typed: usually no automatic
conversion between types
>>> '42' > 32
TypeError: '>' not supported between instances
of 'str' and 'int'
>>> int('42') > 32
True

What about non-existing names?

>>> product
NameError: name 'product' is not defined

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Data and objects

@ Object stored in memory by the Python Virtual Machine
@ Memory is allocated when needed
@ Will be freed later if the object is not in use anymore
(referenced), this is the garbage collector job
@ Every object has a type
>>> 42
42
>>> type(42)
<class 'int'>
>>> type('John')
<class 'str'>
>>> id(42) # memory address
9080320

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 30 / 112

Objects and names

A new name is created by an assignment

>>> name = 'John'
>>> age = 42 + 13
>>> type(name)
<class 'str'>

>>> type (age)
<class 'int'>

>>> id(name)
140240346121136

A name can be deleted
>>> del(age)
>>> age
NameError: name 'age' is not defined

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Références

Every name is actually a reference

@ Strictly speaking it is not a variable
@ Several names can reference the same object
>>> food = 'spam'
>>> bad = food
>>> id(food)
140240345726680
>>> id(bad)
140240345726680
>>> food is bad
True

Comparing references and objects

@ is to know if it is the same object in memory
@ == to know if two objects have the same value

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Numeric built-in types

Family of compatible types

@ int: signed integers, unbounded
@ float: floating point numbers
@ complex: complex numbers
@ You can freely use them alltogether in various kind of
expressions:
>>> price = 42
>>> maximum = 49.99
>>> length = 42.0
>>> z =1 + 2j

>>> price <= maximum # less or equal
True

>>> price == length

True

>>> (z - 1) ** 2 == -4

True

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 33 /112

Numerical operators

+, =, * (product), /, (division), // (floor division), ** (power)
% : modulo (euclidean division remainder)

~, 7, |, & bitwise operators
Each of these is a call to a dunder method: __add__,

__mul__, ...
Complex numbers have attributes: z.real, z.imag
@ More on this later, when we'll deal with classes and objects

Usual priority rules apply, you can use parenthesis to group
sub-expressions.

>>> 1 + 2 ¥ 3 == (1 +2) * 3

False

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 34 /112

Characters string type

@ str: collection of characters
o Litterally expressed by enclosing text with quotes, double
quotes or three of consecutive of these enclosing characters

>>> name = '''John'''
>>> msg = "It's not Joe"
>>> text = 'He is a "boomer", really?'

@ As in many other languages backslash has a specific meaning in
strings
o To insert the litteral inclosing char 'it\'s a "boomer"'
e To insert a special character: end of line \n, smiley
\N{grinning face with smiling eyes}, tab \t
@ Outside of strings a blackslash allow you to break lines without
breaking the Python off-side rule
@ chr(n) is character of code n, ord(c) is the code of character ¢

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 35 /112

Strings operations

@ + : concatenate
@ * : repeat n (integer) times
@ in : look up for a substring
>>> 'John' + ' ' + 'Cleese’
'John Cleese'
>>> 'spam ' * 4
'spam spam spam spam '
>>> 'spam' in 'ham egg spam sausage'
True

Functions

@ len() : length, works for all kind of collections
e int () : integer conversion (error if not possible)
@ float() : conversion into floating point number

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Operators and assignments

It is quite usual to use an operator then assign the result to the

initial name
>>> food = 'egg '
>>> food = food + ' spam'
>>> food
'egg spam'

>>> age = 42
>>> age = age + 1

A shortcut: operator=

>>> food += ' spam'
>>> age += 1

>>> qty *= 2

>>> price /= 2

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 37 /112

Functions

A function is an object that may be called

>>> len # object

<built-in function len>

>>> type(len) # with a type

<class 'builtin function_or_method'>
>>> len('spam') # call: func()

4

>>> int('42"')

42

>>> 'spam' (42)
TypeError: 'str' object is not callable

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 38 /112

Methods

A method is a function inside an object's name space

It may modify the object or return another object

>>> food = 'spam'

>>> food.upper () # new object
'SPAM'

>>> food.isupper ()

False

>>> food # unchanged
'spam'’

>>> food.startswith('spa')

True

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 39 /112

Building complex strings

Putting up together constant and variable parts

>>> price = 42; prod = 'spam'

>>> "Price of " + prod + ' is ' \
+ str(price - 10) + '€

'Price of spam ts 32€'

More convenient: str.format method
>>> 'Price of {} is {}€'.format(prod,price - 10)

Since Python 3.7 : even better!
>>> f"Price of {prod} is {price - 10}€"

A lot of control is possible on string formating, look for str.format
and « f-strings » in the manual.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

How to find out about all these functions and methods?

Read the fine manual!

@ http://docs.python.org/3.7/
@ You can ask for help from the interactive interpreter help (),
help(str)

You can ask Python for names in a namespace!

>>> dir(__builtins__) # built—-in names

[...'dir', ... , 'int', ..., 'len', ..., 'str', ...]
>>> dir(str) # methods on strings
[..., 'lower', ..., 'isupper', ..., 'upper', ...]

>>> import math

>>> dir(math)

[..., cos , factorial, ..., pi, ..., sin, ...]
>>> from math import sin,cos,pi

>>> sin(pi/4) + cos(pi/4)

1.414213562373095

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

http://docs.python.org/3.7/

Booleans

bool type

@ Values True or False

@ This is what operators like ==, =, <, <=, > >= is, is not
return

@ Logical expressions can be build by or, and, not and
parenthesis

What is if expression: doing?

@ First it converts the expression into a boolean:
bool (expression)
@ For 0, 0.0, '', None ; bool(...)is False, otherwise True
@ An empty collection is False, any non-empty is True
o If the result is (True), if executes the following bloc of code
price = 42
if price:
print ("It is not free...")

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

The if instruction

if 'spam' in food:
food += ' more spam'
else:

food += ' spam' # spam is mandatory!

Several tests can be chained by elif (else if) before the
optional else clause

if 'spam' in food:

food += ' more spam' # more spam!
elif 'egg' in food:

food += ' spam' # free spam!
else:

food += ' spam spam' # double spam!

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

if as an expression

The syntax if: ...: ... else: denotes an instruction

You can denote an expression instead:
>>> price = 42
>>> 'expansive' if price > 50 else 'cheap'
'cheap’
>>> price = 57
>>> 'expansive' if price > 50 else 'cheap'
'exzpansive’

Python's expressiveness: readable, consise, powerfull!

msg = 'You have ordered {} product{}'.format(n,
's' if n > 1 else '')

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

44 / 112

Exercise : English Breakfast
Ordering food

@ If some spam is ordered, add good!, else if some ham is ordered
add spam and last, (if neither spam, nor ham have been
ordered) add egg

@ Use only string operators (in, +)

@ Everythin following Command here is user input, the rest is the
program output:

$ python3 breakfast.py

Command: ham egg

Delivered: ham egg spam

$ python3 breakfast.py

Command: ham sausage

Delivered: ham sausage spam

$ python3 breakfast.py

Command: ham spam bacon
Delivered: ham spam bacon good!

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 45 / 112

Now modify your script to add 10 times spam if ever some ham
has been ordered
>>> ' covfefe' * 3

" covfefe covfefe coufefe'

Compute and output how much spam will be delivered:

The count method on strings determine how much times a

sub-string is present
>>> 'to be or not to be'.count('to')

Modify your program accordingly

After the if : elif: else: instruction
$ python3 breakfast.py
Command: ham sausage
Delivered: ham sausage spam
Spam g dl

| [\)

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

What about ordering an hamburger?

@ Now try to order an hamburger
@ How much spam have you got? Why?
° Oh,God,FhBisa bug. ..

il i
06w Ondham shankol {/no 9.057 w7 025
/000 ¢ swhd ERETERA 907 §YC 095 ik
1oc o) e ne EFSERL) 701572505500
03y PRO.> 2. 130420y
Cons l-l}nh?‘y/k
Bogs g = 035 ol speid ;TQJM AW

im .

. s
1700 Started Co;me Tap M(Smg e.k«k)
‘ N Adde s

@zkw\ 70 ?«u\q F

[CES telay -

case e{ b.“l L<.'.\1 {NML

>>> 'ham' in 'egg hamburger coffee'
True

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 47 / 112

Collections

Objects that contains multiple references to other objects
>>> menu
['ham', 'spam', 'egg', 'sausage']
>>> prices
{ 'ham': 42, 'spam': 12, 'sausage': 20 }
>>> prices['spam']
12

A first kind of collection: lists

>>> menu = ['ham', 'spam', 'egg', 'sausage']
>>> menu[0]

"ham'

>>> len(menu)

4

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 48 / 112

Lists

Litteral expression for a list [expression, ...]

@ Expressions enclosed by brackets, separated by commas

e Can contain any type: str, int, list, etc.

@ Can easily be build by splitting a string
>>> data = ['a', 42, 12, -3.14, cos(pi)]
>>> table = [[-2, 41, [7,01]
>>> food = 'ham spam egg bacon spam'.split()
>>> help(str.split)

You can access to collections items with an index

First item is at index 0
>>> datal0]

>>> table[1] [0]
7

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Extracting items and modifying lists

You can change what is the reference at a given index

>>> food[3] = 'sausage'

Negative indices start from the end

>>> food[-1]
"bacon'’
>>> food[-2]

/eggl

You can extract sub-lists (slices)

>>> food[2:4]

['spam', 'egg']
Note that we have extracted a slice from index 2 to index 4 - 1 = 3.
The item at the last index of a slice is not included.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Operators for lists

Operators +, * and in/not in

>>> food = ['ham', 'spam']

>>> food + ['egg', 'sausage']

['ham', 'spam', 'egg', 'sausage']
>>> food * 2

['ham', 'spam', 'ham', 'spam']
>>> 'spam' not in food

False
>>> 'cheese' in food
False
You can get a string back from a list of strings
>>> ' ; '.join(food * 2)

'ham ; spam ; ham ; spam'
You may be puzzled, as this is not list. join(sep) but
sep.join(list)

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Exercises : from strings to lists

Refactoring the previous exercise solution:

@ Store the ordered food in a list of strings
@ Then all tests will be made on that list instead of a unique
string
@ Is there much code to change?
@ Is there a count method for lists? Is it running as expected?
@ Bring back strings in the game by displaying the whole
command like this:
*kxx Fawlty Towers Hotel ¥k
ham

bacon
**x* Service not included **x*x*
@ Is the hamburger bug still there? Why?

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 52 /112

Exercise: instrospection on lists

Ask Python for all available methods on lists

Ignore at that time the ones enclosed by __
>>> myFood = ['spam', 'egg']
>>> dir(list)

>>> help(list.index)
>>> myFood.index('spam')

Try to guess and experiment to determine which ones are modifying
the list they are called on and which one are returning another
object (either a list or not)

What is the sort method doing on a list? What is it returning?
Compare with the function sorted.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 53 / 112

Modifying a list

A single item may be changed

>>> food = ['spam', 'ham', 'egg']
>>> food[1] = 'sausage'

>>> food

['spam', 'sausage', 'egg']

Some methods modify lists too

>>> food.append('pudding')
>>> food.remove('spam')
>>> food.pop()

insert, reverse, sort, extend, clear

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

A list can be modified by assigning a sequence to a slice

A very expressive way to modify a data set

>>> food = 'spam ham egg sausage cheese'.split()
>>> food[1:3]

['ham', 'egg']

>>> food[1:3] = []

>>> food

['spam', 'sausage', 'cheese']

>>> food[1:2]

['sausage']

>>> food[1:2] = ['spam', 'pudding', 'beans']
>>> food

['spam', 'spam', 'pudding', 'beans', 'cheese']

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 55 / 112

Sequences unpacking

Allow to extract information from a sequence into names

>>> product = ['spam', 42]
>>> food, price = product
>>> food

'spam'’

>>> price
42

You can use slices in order to match the number of names, and

repack sub-sequences
>>> product = ['spam', 42, 'good', 10]
>>> food, price = product[:2]
>>> food, price, *end = product
>>> end
['good', 10]

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 56 / 112

Another kind of collection: Dictionaries

Dictionaries: keys and values

>>> pricedb = { 'spam':12, 'ham':42, 'egg':10 }
>>> pricedb['ham']

42

>>> 'ham' in pricedb # looks for keys

True

A dictionary can be altered

>>> pricedb['beans']

KeyError: 'beans'

>>> pricedb['beans'] = 7; pricedb['beans']
-

>>> pricedb.get('spam')

12

>>> pricedb.get('tomatoes',0)

0

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Another Python collection: tuples

Tuple : immutable sequence (similar to lists but cannot change)

You can access to items exactly like if it were a list (indices, slices,
unpacking)

>>> foods ('spam', 'ham', 'egg', 'beans')
>>> prices = (12, 42, 10, 7)

>>> foods[2]

‘egq’

>>> foods[1:3]

('ham', 'egg')

>>> prices[1] = 44

TypeError: 'tuple' object does not support item
assignment

>>> prices_list = list(prices)

>>> prices_list[1] = 44; prices_list

[12, 44, 10, 7]

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 58 / 112

Another kind of Python collections: sets

set and frozenset : mutable an imutable sets

>>> food = { 'spam', 'ham', 'egg', 'ham' }
>>> len(food)

8

>>> food

{ 'spam', 'ham', 'egg' }

Useful (but non only) to remove duplicates

>>> food = ['spam', 'ham', 'egg', 'ham', 'spam']
>>> food = list(set(food))

>>> food

[lhaml’ 'Spam‘, leggl]

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Immutable and mutable

Among all built-in types we have been talking about, which ones are
mutable or immutable?

Immutable

@ Numbers : int, float, complex
@ Strings : str

@ Tuples : tuple

@ Frozen Sets : frozenset

@ Booleans bool, NoneType

Mutable

o Lists : list

@ Dictionaries : dict
e But keys must be of an immutable type

@ Sets : set

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Types conversion

>>> int('42")

42

>>> 1list('spam')

['s', 'p', 'a', 'm']
>>> tuple([1, 2, 3 1)

(1, 2, 3)

>>> 1list((1,2,3))

[1, 2, 3]

>>> '' join(['s', 'p', 'a', 'm'])
'spam'’

All types names (str, int, list, ...) are functions

@ Try to do their best to convert into the specified type, may fail
with error

o Without argument returns zero, void, false, nothing, . ..

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

for loop statement (instruction)

for allow to walk through a collection

>>> foods = 'spam egg ham'.split()
>>> for food in foods:
print (food)

spam

egg
ham

Works for all collections (more generally any iterable)

Lists, including slices

Tuples, including slices

range(n,m,p) : integers from n to (m-1) with step p
Dictionaries (goes through the keys)

Sets

and also (iterables) : files, database queries, CSV file readers,

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 62 / 112

Loops and unpacking

ltems can be collections (lists, tuples, strings)
>>> foods = [('spam', 12), ('ham', 42)]

>>> for elt in foods:
print(elt) # a sequence (tuple)

food, price = elt # t1tems
print(food,price)

('spam', 12)
spam 12
('ham', 42)
ham 42

63 / 112

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

for can walk through items and unpack them

All in one go!

>>> foods = [('spam', 12), ('ham', 42)]
>>> for food, price in foods:

print (food,price)
spam 12
ham 42

Especially convenient for dictionaries!

>>> prices = { 'spam':12, 'ham':42 }
>>> for food, price in prices.items():
print (food,price)

spam 12
ham 42

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Reading a simple text file

Let's read a simple file digits.txt the same way!

one 1
two 2
nine 9

A for loop iterates through the file

for line in open('digits.txt'):
print(line.rstrip()) # remove trailing line feeds,
anyway print adds his own

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Doing better

Using with statement and processing data

with is a statement making sure that the bloc is not executed in the
case of failure in opening file(s) and it will close them if needed.

with open('digits.txt') as input:
for line in input:
word, value = line.rstrip().split()
value = int(value)
print('{} is called {} ' \
'in English'.format(value,word))

Don’t reinvent the wheel

It is even simplier for a CSV file or a database: for a CSV file, csv
module takes care of spliting lines, a database DB connector even
takes care of datatypes.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Exercice : Menu a la carte

A new script alacarte.py built on the previous one

Again ask the user to order various foods and store all of them in a
list.
@ Display all of them with a for loop
@ Assign an empty list to a name up_foods
@ In another for loop going through the list of ordered foods add
each of them, changed to uppercase, in up_foods
@ Display up_foods items

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 67 / 112

The bill. ..

Create a file prices.txt like this:

ham 42
spam 12
beans 8

sausage 11
cheese 10

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 68 / 112

The bill (continued)

@ Read that file and store the relevant information into a
dictionary (you can start from an empty dictionary {})
with open(...) as
pricedb = {}
for line in ...:
prod, price = line.rstrip().split()
price = float(price)
pricedb[prod] = price
print(price)
@ Display the bill including every item, its price and the total
amount to be paid for breakfast.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 69 / 112

Exercise : Cryptography

Build the alphabet

@ In a loop make i vary from the code of ‘a’ to the code of ‘Z’
range(ord('a'), ord('z') + 1)
@ At first display chr (i)
@ Modify the loop to append chr(i) to a list:
alphabet = []
for i in range(ord('a'), ord('z') + 1):
add chr(i) to alphabet

print (alphabet)

Let's change the letters

Given a latin ASCII letter with code k - What is this doing?
secret = 5
chr((k - ord('a') + secret) % 26 + ord('a'))

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Exercise : Cryptography (continued)

This is what Julius Cesar did during Gallic Wars!

@ Ask the user for a whole sentence
@ Loop the string, for all letter you will display another letter:
chr((ord(c) - ord('a') + 5) % 26 + ord('a'))
@ Display these characters with: print(..., end = '')
for ¢ in text.lower():
if c in alphabet:
print(..., end = '')

else:
print(c)
print ()
@ Building alphabet was useless, we reinvented the wheel:
>>> import string
>>> string.ascii_lowercase
'abcdefghi jklmnopqrstuvwzyz '

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 71 /112

Another loop statement: while

Another instruction: while

Execute a bloc while a given condition is true:
>>> ans, menu = '', []
>>> while ans != 'spam': # ask for spam to end
ans = input('Food: ')
menu . append (ans)

Food: ham

Food: egg

Food: spam

>>> print (menu)

['ham', 'egg', 'spam']

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 72 /112

Control of execution flow

Escaping from for and while loops: break

@ When you have encountered a anomaly, found what you were
looking for, an user asks to quit
e With an optional else statement you can execute code only if
the loop exited “normally” (no break)
while True:
ans = input('Name (!END to quit) : ')
if ans == '!END':
break

You can jump to the next iteration with continue

for line in input:
if line.startswith('#'):
continue
data = line.strip().split()
Process data in line

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Comprehensions

A expression build with for

Building a list from another one with a pure functional expression.
>>> foods = ['spam', 'ham', 'egg', 'beans']

>>> [food.upper() for food in foods]

['SPAM', 'HAM', 'EGG', 'BEANS']

You can filter out items
>>> [food.upper() for food in foods \

if food !'= 'egg']
And use if as an expression too
if test else ... we've seen before
>>> [food.upper() if food != 'spam' else 'beuh' \
for food in foods \
if food != 'egg']

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Other datatypes

Various modules extend built-in datatypes

@ collections provides defaultdict, namedtuple, deque, Counter
@ enum provides Enum
@ array provides arrays of homegeneous data
@ Examples at:
https://framagit.org/jpython /miscellaneous-python

text = 'to be or not to be'.split()
d = defaultdict(int)
for w in text:
dlw] += 1
for w,n in d.items():
print('{}: {} times'.format(w,n))
print (Counter(text)) # no need for loop...

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 75 /112

https://framagit.org/jpython/miscellaneous-python

Loops under the hood: iterators

The iteration protocol

@ All objects that obey the iteration protocol can be used in for
loops and are sequence-like objects
@ All collections follows the iteration protocol
>>> it = iter(['spam', 'ham'])
>>> next (it)
'spam'
>>> next (it)
"ham'
>>> next (it)
Stoplteration

They are everywhere

@ Opened files, CSV readers, DB requests, ...
@ Views on dictionaries (items, values, keys)
@ zip, enumerate, ...

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Iterators

Building iterators

@ itertools module provides more ways to build iterators
@ chain, product, repeat
o Comprehension iterators:
squares = (x**2 for x in range(10))
for elt in squares:
print(elt)

More on this later

@ Can be build by functions using the yield instruction
@ Can be build by objects implementing specific dunder methods
__iter__, __next__ and raising StopIteration if needed

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Functions

A function allows to name and reuse code

Defined by the def instruction

>>> def printLicense():
print('Available under the terms')
print('of the WIFPL license')
print('more at: http://www.wtfpl.net/')

>>> printLicense()

Available under the terms

of

If the file wtfpl.py defines this function you can use it as a
library module yet!

>>> from wtfpl import printLicense
>>> printLicense()

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 78 / 112

Arguments and return values

A function may receive arguments

>>> def cry_if_spam(string):
if 'spam' in string:
print("I do not like SPAM!!!")
>>> cry_if_spam('ham egg')
>>> cry_if_spam('ham spam egg')
I do not like SPAM!!!

A function can return something (otherwise it is None)

>>> def where_is_spam(menu) :

return menu.index('spam')
>>> where_is_spam(['egg', 'ham', 'spam', 'beans'])
2

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Optional arguments

Just provide a default value

>>> def price_of (food, discount = 0):
prices = { 'spam': 12, 'ham': 42 }
price = prices.get(food, 0)
price *= (100 - discount)/100
return price

>>> price('ham',10)

37.8

>>> price('ham')

42

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 80 / 112

Calling functions

Arguments can be passed by position

>>> price_of('food',10)

Or by keywords

>>> price_of (discount = 20, food = 'spam')

Or both. .. like when using the print function

>>> print('spam', 'ham', 'egg', 42, sep='\n')

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 81 /112

Variable positional arguments

You can define a function accepting an unknown numbers of

positional arguments

def sum_of_squares(*args):
return sum([elt ** 2 for elt in args])

print (sum_of_squares(1,4,42,12))

You can unpack a sequence as arguments

foods = [Ispaml, 'ham', |egg|]
print (*foods)

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 82 /112

Collecting and unpacking keywords arguments

You can collect keyword arguments in a dictionary

def insert_into_db(**kwargs):
create_user (name=kwargs['name'])
set_food(kwargs [name] ,food=kwargs['food] ")

insert_into_db(name='Joe', food='spam')

You can unpack a dictionary as keyword arguments

user_info = { 'name':'John', 'food':'spam' }

display_form(**user_info)

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Names and scopes

Whenever a name is dereferenced

@ First a lookup is done locally (at function level)

@ Then in all enclosing functions (if any nested def)
@ Then globally (at script or module level)

@ And last at built-in level

@ This is the LEGB rule

When you assign a name

@ Instruction = or operator= (not all the time for the latest)
@ Only local scope is altered
@ You can override this, this is a bad idea

Modifying arguments

@ As every name is a reference, arguments are received as such
@ If an argument is mutable and is modified — say
data.append(. ..) — it will be seen from “outside”

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Generator functions

Another way to build iterators

@ Use yield instruction to release value through next() calls
@ return None to raise Stoplteration
@ Lazy evaluation

def genSq(start=0, end=10):
while True:
if start < n:
yield start**2
start += 1
else:
return None

for i in genSqQ):
print (i)

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 85 /112

Lambda anonymous functions

Building a function without a name
>>> (lambda x,y: x**2 + y*x2)(2,3)

13

>>> f = (lambda n: sum(range(n)))
>>> £(42)

861

LISP-ish construction related to Church lambda-calculus

@ Useful for a quick definition
@ You can put functions in collections and evaluate them later
@ To pass a one-shot function as an argument
>>> areal'rectangle'](2,3) + areal'triangle'](2,3)
9.0
>>> from functools import reduce
>>> reduce((lambda x,y: x*y), range(1,10))
362880

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Exercice : Professional Breakfast

From a previous exercise solution

We can read and store information about various foods from a file.
@ Write a function returning the price of a food
@ Write a function accepting a list of ingredients and returns the
total prices if one orders all of them
© Test this function with a list of foods
@ Rewrite the function to accept directly all foods as arguments

instead of a single list. Call it by passing the list of foods
unpacked.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 87 / 112

Debugging

Read and interpret error messages

@ Python is raising the error as close as possible to the real issue

@ Interpret exceptions:
@ is not callable : this is not a function
e has no attribute. .. : typo in method, bad type or unsupported
operator

Add debugging code

@ print(), sys.stderr.write()
@ logging module

Step by step debugging

@ pdb from the command line
@ pdb can be driven by an IDE like PyCharm or Eclipse with
PyDev extension, Spyder

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Unit test

Various tools and modules

@ unittest from the standard library
@ pytest can be installed easily
@ nose is a very popular fork of pytest

Example with nose

from yourmodule import price_of
def test_price_of_food():
p = price_of ('ham')
assert p == 42
p = price_of('spam')
assert p == 12
p = price_of('notfood')
assert p ==
p = price_of('ham',10)
assert p == 42 - 42/10

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Running tests with nose

Just run nosetests

$ nosetests test_priceof.py

Ran 4 test in 0.001s
OK

You can even get a test coverage report
$ nosetests --with-coverage \
-—cover-html \

test_priceof.py
$ firefox cover/index.html &

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND

Python Programming

Exercise: Spy against Julius Cesar

Context

In Gallic Wars Julius Cesar explained the cryptographic system he
used: a circular permutation on the latin alphabet.

The story

We have intercepted an encrypted message from the Romans. We
happen to know that it contains the word spam. We have to break
that code!

Here is the message:
Z UF EFK CZBV JGRD RK RCC!!! Z UF EFK NREK KYRK!
A'VJGVIV HLV MFLJ MFLJ VKVJ RDLJVJ GVEUREK TV TFLIJ...

Break the code!

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Steps for breaking the code

Encode char and string

@ Write a function encode_char(c,n) returning the encrypted
result for char cif it is a letter, ¢ otherwise (help yourself with
the string module)

@ Write a function encode_string(msg,n) returning the
encrypted version of string msg

@ Write a decode_string function

@ In a loop try to decode the secret message with key k with k
looping over range(1,26)

@ Break if the hint (‘spam’) has been food and display the
decyphered message

@ An else clause at the end of the loop allows you to handle
failure (or you can use a boolean flag)

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

What is Object Oriented Programming?

An object is a container

@ It has attributes: all are Python objects
@ Some are data: lists, integers, strings, ...
@ Others are methods: functions acting on/using the object

A class is a template for objects

@ A given object is an instance of a class
@ Class are basically the same thing as types in Python

An instance can be built by calling the constructor

@ In Python a special method called __init__

@ Strictly speaking this is an initializer

@ As all methods it will receive self as a first argument
@ Usually populates attributes from arguments

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Example: the built-in complex class

Built-in types usually have a litteral syntax

>>> z =1+ 2j # instance of complex

>>> type(z) # its class

<class 'complex'>

>>> z.real # instance data attribute
1.0

>>> z.conjugate() # a method call

(1-23)

>>> dir(z) # all instance attributes

They are still objects as any others
>>> z = complex(1,2)

>>> z + (1 + 3j)

(2+53)

>>> z.__add__(1 + 3j)

(2+53)

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Object Oriented Programming

Python is object oriented from the ground up

@ Every type is a class
@ Everything is an object

You can create your own classes

@ Specify in __init__ method what to do at initialisation time
@ Will be called when creating an instance of that class
class Point:

Called implicetely by Point(z,y, label)
def __init__(self,x,y,label):

self.x = x

self.y =y

self.label = label
def show(self):

print ('{}({}, {})'.format(label,x,y))

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 95 / 112

Normal and dunder methods

Normal methods are called by their names

p = Point(3, 4, 'center')
p-show() # same as Point.show(p)

Specials methods called implicitely

@ __init__ at initialisation stage
__add__, __sub__, _mul__, ... for +, —, *, ... operators

__str__ when converted into string
__repr__ when displayed in REPL

def __str__(self):
return '{}({}, {})'.format(label,x,y)
def __repr__(self):
return 'Point({}, {}, {})'.format(x,y,label)

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Specials methods and operators

How is an expression with an operator evaluated?

When evaluating a + b. ..
o First a.__add__(b) is tried
o Which is actually (class of a).__add__(a,b)
@ Thenb. radd__(a) is tried
o Which is actually (class of b).__radd__(b,a)

It's not a big deal to overload operators. ..

@ Just define __add__, _sub mul

@ Don't shoot yourself in the foot though!

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Inheritance

A class can inherit from another one

@ The subclass can redefine and add methods and attributes
@ Either from built-in, modules or custom classes
@ Multiple inheritance is supported
from enum import Enum
from operator import add
class Move(Enum): # Inherit from Enum
UP = (0, -1) # No need for __init__
DOWN (0, 1) # Just provides allowed
RIGHT = (1, O) # constant walues
LEFT (-1, O0) # as class attributes
called when evaluating coord + self
def __radd__(self,coord):
return tuple(add(*t) for t in
zip(self.value, coord))
print((3,4) + Move.UP)

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 98 / 112

Modules

Any Python script is already a module

Just import mymodule.py the way you want:
import mymodule
mymodule .myfunc (42)
from mymodule import myfunc
myfunc (42)
import mymodule as mm
mm. func (42)

Conditional execution
You can execute code only if executed, i.e. not imported

if _name__ = '_ main__
Test code, mot exzecuted tf <mported

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming

Exercise: Objects and inheritance

Moving a tuple of coordinates the other way around

@ Instead of inheriting from Enum for a move, create a class
Coord inheriting from tuple
@ Define the __add__ method which is called when a tuple is
added to it (instead of defining __radd__ in the Move type)
>>> ¢ = Coord(3, 4)
>>> print(¢ + Move.UP)
(3, 3)
@ Define the __str__ method:
>>> print(c + Move.UP)
Coord (3, 3)
@ You can also do sanity checks
if not isinstance(move.value, tuple) \
and len(move.value) ==
raise ValueError('Not a 2-valued tuple')

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 100 / 112

More on objects

Things to know about Python classes and objects

@ Parent methods can be called in overrided methods
def __init__(self, ...):
my stuff ...
super().__init__(...) # no self
def mymethod(self, ...):
my stuff ...
super () .mymethod(...) # no self

@ There are no private attributes or methods
e Mark internal attributes with a prefix _ or
e Then then won't appear in he/p(YourC/ass)

@ Class names usually should have a leading capital (PEP 8)

@ You can define class methods and static methods

@ You can create accessors (i.e. calling functions implicitely when
dereferencing/assigning a name)

@ Most of this is based on decorators

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 101 / 112

Installing modules

o All modules on pypi.org are installable with pip
@ Especially convenient in a virtual environment
$ python3 -m venv venv
$ source venv/bin/activate
MS Windows: venv\Script\activate.bas
(venv) $ pip install requests
(venv) $ python3
>>> import requests

@ Anaconda suite provides a similar tool: conda
(base) $ conda install

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND

Python Programming 102 / 112

Anaconda

Anaconda is a single package installing Python and a huge set

of modules and tools
@ [Python : improved REPL command line interface
@ numpy : efficient number and multi-dimensionnal arrays
computation
@ pandas : data indexing, querying and aggregation

@ Both provide objects with similar interfaces (iteration protocol,
method names) to built-in Python or array module objects

@ Interface nicely with CSV files, SQL databases, even Excel files

@ scipy : numerical analysis, linear algebra, statistics

@ scikit-learn : classification, clustering, regression

@ matplotlib, seaborn : data visualization, imaging

Note that all these package may also be installed independantly
from Anaconda by pip.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 103 / 112

Anaconda

Graphical User Interface

@ anaconda-navigator gives access to most graphical tools
@ Jupyter : notebook oriented Web interfaces
@ Spyder : Integrated Development Environment
@ PyCharm can also interfaces itself with Anaconda
More packages (set of modules) can be installed by conda
command.

Notebooks
@ You can share notebooks IPython files saved by Jupyter
@ Many are available on the Internet

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 104 / 112

Numpy

Efficient numerical and array types

>>> import numpy as np
>>> np.array([[1,2,3] , [4,5,6] 1)
array([[1, 2, 3],

[4, 5, 611)
>>> t = np.array([[1, 2, 3] , [4, 5, 6] 1)
>>> type(t [0] [1])
<class 'numpy.int64'>
>>> t = np.array([[1, 2, 3] , [4, 5.0, 6] 1)
>>> type(t[0][1])
<class 'numpy.float64'>

Mathematical functions

>>> np.exp(t)
array([[2.71828183, 7.3890561 , 20.08553692],
[54.59815003, 148.4131591 , 403.42879349]1])

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 105 / 112

Arrays in numpy

Arrays creation

@ Can be generated from sequences, constant or random values,
ranges, files

@ Can be reshaped, iterated through, flattened

@ Items can be addressed by single or multiple index, slices

Operations on arrays

@ Functions acting on elements
@ Linear algebra (transpose, multiply)
e Compound functions (sum, mean, average, ...)
>>> np.sum(t)
21.0
>>> np.sum(t, axis=0)
array([56., 7., 9.1)
>>> np.sum(t, axis=1)
array([6., 15.1)

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 106 / 112

Pandas series

Build on top of Numpy

@ Dictionary-like indexing
@ Both sequence-like and dictionary-like objects
>>> data = pd.Series([42.42, 3.14, 1.0],
index=['price', 'size', 'weight'])
>>> datal'price']

42 .42

>>> data

price 42 .42

size 3.14

weight 1.00

>>> data['size'] == datal1]
True

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 107 / 112

Pandas series

Database-like object

>>> data.where((lambda x: x > 2))

price 42.42
size 3.14
weight NaN

dtype: float64

Filtering out NaNs

>>> data.where((lambda x: x > 2)).dropna()
price 42.42
size 3.14
dtype: float64

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 108 / 112

Pandas dataframes

Both are build on top of np.arrays

@ Series are general sequence and dictionary-like one dimensional
objects
@ Dataframes are general sequence and dictionary-like
two-dimensional objects
>>> prices = pd.Series({ 'spam':12.5, 'egg':4.3 })

>>> qty = pd.Series({ 'spam':4, 'egg':12 })
>>> stock = pd.DataFrame({ 'price': prices,
'qty': qty })
>>> stock
price qty
spam 12.5 4
egg 4.3 12

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 109 / 112

Dataframe manipulation

You can add columns like you add dictionary entries

>>> stock['value'] = stock['price']l * stock['qty']
>>> stock
price qty value
spam 12.5 4 50.0
egg 4.3 12 51.6

And aggregates values

>>> stock.sum()
price 16.8
qty 16.0
value 101.6

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 110 / 112

Data filtering

>>> stock[stock.price > 5]
price qty value
spam 12.5 4 50.0

How can it works??

@ Isn't stock.price > 5 supposed to be a boolean?
@ No it isn't! Not at all!

>>> stock.price > 5

spam True

egg False

Name: price, dtype: bool

>>> type(stock.price > 5)

<class 'pandas.core.series.Series'>

Pandas massively overloads comparison operators.

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 111 / 112

Numpy, Pandas, Matplotlib, and data science ressources

@ Python Data Science : book and Jupyter notebooks
https://jakevdp.github.io/PythonDataScienceHandbook/

@ Scipy/Numpy Introduction
https://sites.engineering.ucsb.edu/~shell /che210d /numpy.pdf

@ Scikit tutorial
https://scikit-learn.org/stable/tutorial /index.html

@ Matplotlib Pyplot tutorial
https://matplotlib.org/tutorials/introductory/pyplot.html

© Jean-Pierre Messager (jp@xiasma.fr) CC-BY-NC-ND Python Programming 112 / 112

https://jakevdp.github.io/PythonDataScienceHandbook/
https://sites.engineering.ucsb.edu/~shell/che210d/numpy.pdf
https://scikit-learn.org/stable/tutorial/index.html
https://matplotlib.org/tutorials/introductory/pyplot.html

